
Advances in Experimental Medicine and Biology 1442

Meng Zhao
Pengxu Qian   Editors

Hematopoietic 
Stem Cells
Keystone of Tissue Development and 
Regenerative Medicine



N6-Methyladenosine RNA Modification 
in Normal and Malignant Hematopoiesis 7 
Hengyou Weng, Huilin Huang, and Jianjun Chen 

Abstract 

Over 170 nucleotide variants have been dis-
covered in messenger RNAs (mRNAs) and 
non-coding RNAs so far. However, only a 
few of them, including N6-methyladenosine 
(m6 A), 5-methylcytidine (m5 C), and N1-
methyladenosine (m1 A), could be mapped in 
the transcriptome. These RNA modifications 
appear to be dynamically regulated, with 
writer, eraser, and reader proteins being 
identified for each modification. As a result, 
there is a growing interest in studying their 

biological impacts on normal bioprocesses 
and tumorigenesis over the past few years. 
As the most abundant internal modification in 
eukaryotic mRNAs, m6 A plays a vital role in 
the post-transcriptional regulation of mRNA 
fate via regulating almost all aspects of 
mRNA metabolism, including RNA splicing, 
nuclear export, RNA stability, and translation. 
Studies on mRNA m6 A modification serve as 
a great example for exploring other 
modifications on mRNA. In this chapter, we 
will review recent advances in the study of 
biological functions and regulation of mRNA 
modifications, specifically m6 A, in both nor-
mal hematopoiesis and malignant hematopoie-
sis. We will also discuss the potential of 
targeting mRNA modifications as a treatment 
for hematopoietic disorders. 
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Abbreviations 

2OG 2-Oxoglutarate 
5-Aza 5-Azacytidine 
ALKBH5 AlkB homolog 5 
ALL Acute lymphoblastic leukemia
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AML Acute myeloid leukemia 
Ara-C Cytosine arabinoside 
ATRA All-trans retinoic acid 
CLP Common lymphoid progenitor 
CML Chronic myeloid leukemia 
CMP Common myeloid progenitor 
CTCL Cutaneous T-cell lymphoma 
DAC Decitabine 
DLBCL Diffuse large B-cell lymphoma 
DNR Daunorubicin 
EHT Endothelial-to-hematopoietic 

transition 
ELAVL1 ELAV-like RNA-binding protein 1 
FTO Fat mass and obesity-associated 
GMP Granulocyte/macrophage 

progenitor 
HNRNP Heterogeneous nuclear 

ribonucleoprotein 
HSCs Hematopoietic stem cells 
HSPCs Hematopoietic stem and 

progenitor cells 
IDH Isocitrate dehydrogenase 
IGF2BP Insulin-like growth factor 

2 mRNA-binding proteins 
KH K homology 
lncRNA Long non-coding RNA 
LSCs/ 
LICs 

Leukemic stem cells/leukemia-
initiating cells 

m1 A N1-Methyladenosine 
m5 C 5-Methylcytidine 
m6 A N6-Methyladenosine 
METTL14 Methyltransferase-like 14 
METTL3 Methyltransferase-like 3 
METTL5 Methyltransferase-like 5 
MTase Methyltransferase 
MTC Methyltransferase complex 
NKTCL Natural killer/T-cell lymphoma 
R-2HG R-2-Hydroxyglutarate 
RBM15 RNA-binding motif protein 15 
rRNA Ribosomal RNA 
SAM S-Adenosyl-L-methionine 
SNPs Single-nucleotide polymorphisms 
snRNA Small nuclear RNA 
TF Transcription factor 
TKI Tyrosine kinase inhibitor 
tRNA Transfer RNA 
VIRMA 

Vir-like m6 A methyltransferase 
associated 

WTAP Wilms’ tumor 1-associating protein 
YTH YT521-B homology 
ZC3H13 Zinc finger CCCH domain-

containing protein 13 
ZCCHC4 Zinc finger CCHC-type-containing 

4 
α-KG α-Ketoglutarate 
ψ Pseudouridine 

7.1 Introduction 

The first modified RNA nucleotide variant, 
pseudouridine (ψ), was discovered as the “fifth 
RNA nucleotide” in the 1950s (Davis and Allen 
1957). Since then, over 170 types of RNA chem-
ical modifications have been identified in both 
protein-coding and noncoding RNAs (Adams 
and Cory 1975; Alarcon et al. 2015b; Amort 
et al. 2013; Carlile et al. 2014; Charette and 
Gray 2000; Cohn and Volkin 1951; Deng et al. 
2018c; Dunn 1961; El Yacoubi et al. 2012;  F  
et al. 2014a; Hall 1963; Huang et al. 2020c; 
Huber et al. 2015; Krug et al. 1976; Roundtree 
et al. 2017a; Squires et al. 2012; Wei and Moss 
1977). However, most of the previous research on 
RNA modification has focused on non-coding 
RNAs, such as transfer RNA (tRNA), ribosomal 
RNA (rRNA), and small nuclear RNA (snRNA). 
In 2011, Dr. He and colleagues reported that the 
m6 A modification on mRNA can be reversibly 
removed by FTO (Jia et al. 2011). This ground-
breaking discovery has revived the field of RNA 
modification research. Newly developed methods 
for isolating RNAs containing specific types of 
modified nucleosides, coupled with high-
throughput sequencing, now enable the mapping 
of landscapes of RNA modifications, such as 
m6 A, m5 C, m1 A, inosine, and pseudouridine 
(ψ), in mRNA across various cellular contexts 
(Carlile et al. 2014; Dominissini et al. 2012, 
2016; Huang et al. 2020a; Li et al. 2015; Lovejoy 
et al. 2014; Meyer et al. 2012; Safra et al. 2017; 
Schwartz et al. 2014a; Squires et al. 2012; Suzuki 
et al. 2015). Meanwhile, significant progress has 
been made, and efforts are ongoing to identify
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regulators of RNA modifications (Huang et al. 
2020c). Similar to modifications in histones and 
DNA methylation, reversible modifications in 
RNA involve three categories of regulatory 
proteins: “writer” proteins that deposit the modi-
fication, “eraser” proteins that remove the modifi-
cation, and “reader” proteins that recognize the 
modification and mediate RNA fate decisions 
(Huang et al. 2020b). 
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The RNA m6 A modification has attracted the 
most attention in this field over the past decade. 
The discovery of m6 A modification can be traced 
back to the 1970s (Adams and Cory 1975; Krug 
et al. 1976; Wei and Moss 1977). It is now well 
acknowledged that m6 A is the most prevalent and 
abundant internal modification in eukaryotic 
mRNA. With the development of an antibody-
based pull-down coupled with high-throughput 
sequencing method, it has become clear that 
m6 A modification in the transcriptome exhibits a 
unique pattern, showing an enrichment around 
the stop codons of mRNAs and a consensus 
sequence of RRACH (R = G or A; H  = A, C, 
or U) (Dominissini et al. 2012; Meyer et al. 2012). 
Further investigation suggests that m6 A marks are 
installed co-transcriptionally into nascent RNAs 
and that histone H3K36me3 modification, along 
with other regulatory factors, plays a critical role 
in determining the site selection for m6 A deposi-
tion (Huang et al. 2019a). On the other hand, 
functional studies have demonstrated the involve-
ment of m6 A modification in controlling normal 
biological and pathological processes, including 
stem cell biology, tissue development, circadian 
rhythm, sex determination, tumorigenesis, and 
drug response (Alarcon et al. 2015b; Barbieri 
et al. 2017; Chen et al. 2015; Deng et al. 
2018a, b, c; Dong et al. 2021; Geula et al. 2015; 
Huang et al. 2018, 2020b; Li et al. 2017b; Su et al. 
2018; Vu et al. 2017; Wang et al. 2014b; Weng 
et al. 2018; Xiang et al. 2017; Zhang et al. 
2017a, b; Zhao et al. 2014, 2017a, b; Zheng 
et al. 2013; Zhou et al. 2015). Here, we summa-
rize recent advances in understanding the 
biological functions and regulation of m6 A i  
both normal and malignant hematopoiesis. Addi-
tionally, we discuss the potential of targeting m6 A 

modifications as a treatment for hematopoietic 
disorders. 

7.2 Regulators of m6 A Modification 

The main “writer” of mRNA m6 A modification is 
a large multicomponent methyltransferase com-
plex (MTC), in which methyltransferase-like 
3 (METTL3) and methyltransferase-like 
14 (METTL14) proteins form a core heterodimer, 
while other components, including Wilms’ tumor 
1-associating protein (WTAP), vir-like m6 A 
methyltransferase associated (VIRMA, also 
known as KIAA1429), RNA-binding motif 
protein 15 (RBM15), and zinc finger CCCH 
domain-containing protein 13 (ZC3H13), act as 
regulatory subunits to facilitate m6 A installation 
in cells (Bokar et al. 1997; Guo et al. 2018; 
Knuckles et al. 2018; Liu et al. 2014; Patil et al. 
2016; Ping et al. 2014; Schwartz et al. 2014b; 
Wang et al. 2014b; Wen et al. 2018). Although 
both METTL3 and METTL14 belong to the 
MT-A70 family of S-adenosyl-L-methionine 
(SAM)-dependent methyltransferases (MTases), 
structural studies suggest that METTL3 is the 
only catalytic subunit in the MTC, while 
METTL14 provides an RNA-binding scaffold 
that allosterically activates and enhances the cata-
lytic activity of METTL3 (Sledz and Jinek 2016; 
Wang et al. 2016a, b). METTL16 was initially 
identified as a methyltransferase for several 
structured RNAs (e.g., U6 snRNA) and 
pre-mRNA (Brown et al. 2016; Mendel et al. 
2018; Pendleton et al. 2017). However, it has 
been recently shown that METTL16 could also 
methylate hundreds of mRNA transcripts in the 
nucleus, in addition to its methyltransferase-
independent role in the cytosol as a facilitator of 
translation-initiation (Su et al. 2022). Two other 
m6 A writers, zinc finger CCHC-type-containing 
4 (ZCCHC4) and methyltransferase-like 
5 (METTL5), can independently catalyze m6 A 
modifications on 28S and 18S ribosomal RNAs 
(rRNAs), respectively (Ma et al. 2019; Pinto et al. 
2020; van Tran et al. 2019). 
Fat mass and obesity-associated (FTO) and 

AlkB homolog 5 (ALKBH5) are two “eraser”



proteins that have been discovered so far to cata-
lyze the removal of m6 A modification. They both 
belong to the AlkB subfamily of the Fe(II)/2-
oxoglutarate (2OG) dioxygenase superfamily. 
This subfamily requires α-ketoglutarate (α-KG) 
and molecular oxygen as co-substrates, as well 
as ferrous iron Fe(II) as a cofactor, to catalyze the 
oxidation and demethylation of a substrate 
(Gerken et al. 2007; Kurowski et al. 2003). FTO 
was identified as the first m6 A demethylase that 
could demethylate m6 A in both DNA and RNA 
in vivo (Jia et al. 2011). Later on, it was reported 
that FTO also demethylates m6 Am (Mauer et al. 
2017), a modification exclusively found at the 
first encoded nucleotide after the 5′
methylguanosine cap of mammalian mRNAs but 
with considerably lower overall abundance com-
pared to m6 A (Su et al. 2018; Wei et al. 2018). 
Different from FTO, ALKBH5 catalyzes the 
direct removal of m6 A (Fu et al. 2014b). 
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The “reader” proteins act as effectors that 
mediate the biological consequences of m6 A 
modification by selectively binding to 
m6 A-modified RNAs (Deng et al. 2018c; Yang 
et al. 2018; Zhao et al. 2017a). Many m6 A readers 
have been identified so far, each with diverse 
mechanisms for recognizing of m6 A and resulting 
in various consequences on RNA metabolism. 
The YT521-B homology (YTH) domain family 
of proteins, including YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, and YTHDC2, utilizes 
their conserved m6 A-binding pocket within the 
YTH domain to directly bind the m6 A base 
(Dominissini et al. 2012; Hsu et al. 2017; Luo 
and Tong 2014; Wang et al. 2014a, 2015; Xiao 
et al. 2016; Xu et al. 2014; Zhu et al. 2014). 
Among them, YTHDF2 was the first identified 
and the most studied m6 A reader protein that 
promotes the degradation of m6 A-modified target 
mRNAs (Du et al. 2016; Wang et al. 2014a). On 
the other hand, studies have shown that YTHDF1 
promotes the translation of m6 A-modified 
mRNAs (Wang et al. 2015). In contrast, 
YTHDF3 and YTHDC2 can mediate mRNA 
decay while also enhancing translation (Bailey 
et al. 2017; Hsu et al. 2017; Jain et al. 2018; Li  
et al. 2017a; Shi et al. 2017; Wojtas et al. 2017). 
Unlike the reader proteins mentioned above that 

are located in the cytoplasm, YTHDC1 is primar-
ily located in the nucleus. It plays a crucial role in 
regulating splicing, XIST-mediated X chromo-
some silencing, and nuclear export of 
m6 A-modified mRNAs (Patil et al. 2016; 
Roundtree et al. 2017b; Xiao et al. 2016). Addi-
tionally, it controls the integrity of heterochroma-
tin by recognizing m6 A modifications on 
transposon-derived RNAs (Chen et al. 2021a; 
Liu et al. 2021). In contrast to the YTH family 
of proteins, insulin-like growth factor 2 mRNA-
binding proteins (IGF2BPs), which include 
IGF2BP1/2/3, have been identified as a new fam-
ily of m6 A readers. These proteins promote sta-
bility and translation of their target mRNAs 
(Huang et al. 2018). IGF2BP proteins use their 
K homology (KH) domains (especially the 
KH3-4 di-domain) and possibly the flanking 
sequence to recognize m6 A. They play a crucial 
role in determining the fate of mRNA by 
recruiting mRNA stabilizers like ELAV-like 
RNA-binding protein 1 (ELAVL1), also known 
as HuR (Huang et al. 2018). Several heteroge-
neous nuclear ribonucleoproteins (HNRNPs) 
have also been reported as m6 A readers. 
HNRNPC and HNRNPG have been shown to 
recognize m6 A-induced changes in mRNA sec-
ondary structures and facilitate alternative splic-
ing of target mRNAs (Liu et al. 2015; Zhou et al. 
2019). HNRNPA2B1 was previously shown to 
regulate alternative splicing and primary 
microRNA processing as an m6 A reader (Alarcon 
et al. 2015a). However, a later study suggested a 
mechanism called “m6 A switch” instead of direct 
binding to m6 A (Wu et al. 2018). The list of m6 A 
reader proteins is expanding, and other proteins 
are being proposed as m6 A interactors, including 
FMR1 and LRPPRC (Arguello et al. 2017; 
Edupuganti et al. 2017). However, additional 
mechanistic studies are necessary to more accu-
rately categorize these proteins. 

7.3 m6 A Modification in Normal 
Hematopoiesis 

Hematopoiesis is defined as a tightly regulated 
process that produces mature blood cells from a



small pool of multipotent hematopoietic stem 
cells (HSCs) (Doulatov et al. 2012; Rosenbauer 
and Tenen 2007). Decades of research have 
provided basic knowledge on the regulation of 
normal hematopoiesis, highlighting a critical 
role of hematopoietic transcription factors (TFs) 
in regulating the multistep normal hematopoiesis 
and in determining cell fate in the hematopoietic 
system (Goode et al. 2016; Koschmieder et al. 
2005; Rosmarin et al. 2005). For example, PU.1 
(also known as SPI1) and C/EBPα are essential in 
generating early myeloid progenitors (i.e., com-
mon myeloid progenitors, CMPs) and granulo-
cyte/macrophage progenitors (GMPs), 
respectively (Dakic et al. 2005; Rosenbauer and 
Tenen 2007), while PAX5 is required for the 
early development of the B-cell lineage (Mikkola 
et al. 2002). In addition, epigenetic regulatory 
mechanisms, including DNA methylation, his-
tone modifications, and non-coding RNAs, have 
been shown to contribute to HSC homeostasis 
and normal hematopoiesis (Butler and Dent 
2013; Challen et al. 2014; Chen et al. 2010; 
Guillamot et al. 2016; Moran-Crusio et al. 2011; 
O’Connell et al. 2010; Ooi et al. 2010; Weng et al. 
2019). Emerging as a new type of epigenetic 
regulation, m6 A RNA modification was 
demonstrated to be critical in governing HSC 
biology and hematopoiesis in recent years 
(Fig. 7.1). 
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7.3.1 METTL3 

As the sole catalytic subunit in the m6 A MTC,  
METTL3 has been extensively studied in the 
hematopoietic system across a range of species, 
from zebrafish to mammals. Decreased levels of 
m6 A resulting from mettl3 deficiency in zebrafish 
embryos cause blockage of HSPC emergence 
(Zhang et al. 2017a). Mechanistic studies have 
revealed that the reduction of m6 A on  notch1a 
mRNA suppresses YTHDF2-mediated mRNA 
decay, leading to the continuous activation of 
the Notch signaling in arterial endothelial cells. 
This results in the blockage of endothelial-to-
hematopoietic transition (EHT) and the repres-
sion of the earliest HSPC generation in 

mettl3-deficient zebrafish embryos (Zhang et al. 
2017a). This mechanism appears to be conserved 
in mice, as knockdown of Mettl3 in the aorta-
gonad-mesonephros impairs colony formation, 
likely also through activation of the Notch1 sig-
naling pathway (Zhang et al. 2017a). Yao et al. 
discovered that conditional ablation of Mettl3 in 
the mouse hematopoietic system significantly 
increased the frequency of HSCs in the bone 
marrow and suppressed self-renewal capability 
of HSCs in recipient mice undergoing bone mar-
row transplantation (BMT) (Yao et al. 2018). Vu 
and colleagues reported that the knockdown of 
METTL3 expression in human HSPCs inhibited 
cell growth and increased myeloid differentiation. 
On the other hand, overexpression of wild-type 
METTL3, but not its catalytically dead mutant, 
promoted proliferation and colony formation and 
inhibited myeloid differentiation (Vu et al. 2017). 

7.3.2 METTL14 

In mouse bone marrow, Mettl14 was found to be 
highly expressed in HSCs and Lin– Sca-1+ c-kit+ 

(LSK) cells and be responsible for the high m6 A 
level in these naïve cells (Weng et al. 2018). 
Notably, the expression of Mettl14 was gradually 
downregulated during myelopoiesis, with the 
lowest expression observed in mature myeloid 
cells (Weng et al. 2018). Consistent with this 
expression pattern, the knockdown of METTL14 
in human HSPCs promoted myeloid differentia-
tion in vitro. Moreover, conditional knockout of 
Mettl14 in donor cells impaired the self-renewal 
ability of HSCs in the BMT recipient mice (Weng 
et al. 2018; Yao et al. 2018). Interestingly, SPI1, 
which is a transcriptional master regulator of 
myelopoiesis, was identified as a negative regula-
tor that controls the transcription of METTL14 in 
the hematopoietic system (Weng et al. 2018). 
Considering the role of SPI1 (Iwasaki et al. 
2005), MYB (Mucenski et al. 1991; Sandberg 
et al. 2005), and MYC (Satoh et al. 2004; Wilson 
et al. 2004) transcription factors in regulating 
HSC self-renewal and differentiation, the SPI1-
METTL14-m6 A-MYB/MYC regulation axis



adds a new layer of complexity to the regulatory 
networks involved in normal hematopoiesis. 
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Fig. 7.1 The involvement of m6 A regulators in normal 
hematopoiesis. The m6 A modification and its associated 
m6 A regulators have been demonstrated to be crucial for 

the self-renewal of HSCs/HSPCs and for the proper devel-
opment of blood cells. Writers are represented in red, 
erasers in green, and readers in blue 

7.3.3 RBM15 

RBM15, also known as OTT1, was initially 
identified as a fusion partner of the MKL1 gene 
detected in infant acute megakaryocytic leukemia 
with t(1;22)(p13;q13). RBM15 was recently 
identified as a component of the m6 A MTC. 
Early studies have shown that conditional knock-
out of Rbm15 resulted in an increase in HSPCs 
and an expansion of myeloid and megakaryocytic 
cells in the spleen and bone marrow while 
blocking B-cell differentiation (Raffel et al. 
2007). Ma et al. found that Rbm15 was expressed 
at the highest levels in HSCs and inhibited mye-
loid differentiation and megakaryocytic expan-
sion by stimulating the Notch signaling 
(Ma et al. 2007). Consistently, Rbm15 is required 

for normal interactions between HSCs and their 
niche, as well as for normal megakaryocyte 
development, at least in part through the regula-
tion of MYC expression (Niu et al. 2009). 

7.3.4 ALKBH5 

Two independent studies reported that ALKBH5 
is dispensable for normal hematopoiesis (Shen 
et al. 2020; Wang et al. 2020). Using the 
Alkbh5 constitutive knockout mouse model, 
researchers demonstrated that Alkbh5 deletion 
did not result in significant changes in the total 
number of bone marrow cells or the percentages 
of different subpopulations of HSPCs or 
differentiated lineages in either bone marrow or 
peripheral blood. Moreover, the knockout of 
Alkbh5 did not affect the self-renewal capacity 
or the long-term function of HSCs (Shen et al. 
2020; Wang et al. 2020).



7 N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis 111

7.3.5 YTHDF2 

YTHDF2 is the first well-characterized m6 A 
reader that promotes the degradation of mRNA 
transcripts containing m6 A modification (Wang 
et al. 2014a). Li et al. reported a remarkable 
increase in functional HSCs in the bone marrow 
of Ythdf2 conditional knockout mice and in 
human umbilical cord blood upon YTHDF2 
knockdown, which was at least partially 
attributed to the enhanced stability of mRNA 
transcripts that encode TFs critical for stem cell 
self-renewal (Li et al. 2018). It was also reported 
by another group that deficiency in YTHDF2 
enhanced HSC activity, and YTHDF2 did not 
appear to be essential for normal HSC function 
(Paris et al. 2019). However, the same group 
recently investigated the long-term effects of 
YTHDF2 deletion on HSC maintenance and 
multi-lineage hematopoiesis, and the results sug-
gest that YTHDF2 acts as a repressor of inflam-
matory pathways in HSCs and is a key factor for 
long-term HSC maintenance (Mapperley et al. 
2021). 

7.3.6 YTHDC1 

Loss of Ythdc1 resulted in rapid hematopoietic 
failure in mice, leading to their death within 
3 weeks (Sheng et al. 2021). Further studies 
have shown that induced deletion of Ythdc1 
compromises hematopoiesis and HSC functions. 
The numbers of HSPCs, mature myeloid cells, 
and B cells all decrease dramatically in Ythdc1 
KO recipient mice compared to Ythdc1 
haploinsufficient or wild-type recipient mice 
(Sheng et al. 2021). 

7.4 m6 A Modification in Malignant 
Hematopoiesis 

The pioneering work by Ernest McCulloch and 
James Till in identifying HSC and characterizing 
their properties strongly suggests that maintaining 
HSC homeostasis requires a precise balance 

between self-renewal and multi-lineage differen-
tiation (McCulloch and Till 2005; Siminovitch 
et al. 1963). Disrupting this balance, whether 
through the well-studied mutations or aberrant 
expression of TFs or through dysregulation of 
epigenetic modifications, places HSC at a higher 
risk of developing hematopoietic diseases, such 
as leukemia (Chen et al. 2010; Huang et al. 2013; 
Qing et al. 2021; Weng et al. 2019). 
Dysregulation of m6 A regulators has been 
observed in hematopoietic malignancies 
(Fig. 7.2). 

7.4.1 Acute Myeloid Leukemia (AML) 

AML is a common subtype of leukemia that is 
commonly diagnosed in both adults and children. 
Unfortunately, it has the lowest 5-year survival 
rate (<30%) among all types of leukemia. This 
makes AML a fatal subtype of leukemia. 
Accumulating evidence in the past few years has 
closely linked RNA m6 A modification with the 
initiation and development of AML. 
FTO is the first gene known to play a role in 

malignant hematopoiesis, specifically AML, 
through an m6 A-dependent mechanism (Li et al. 
2017b). Previously, FTO was recognized as a 
gene related to fat mass, adipogenesis, and body 
weight (Church et al. 2010; Fischer et al. 2009; 
Merkestein et al. 2015). However, recent 
large-scale epidemiology studies have revealed a 
connection between FTO and cancers such as 
leukemia and lymphoma, as evidenced by 
single-nucleotide polymorphisms (SNPs) in 
FTO among patients (Castillo et al. 2012; 
Hernandez-Caballero and Sierra-Ramirez 2015; 
Soderberg et al. 2009). We found that FTO is 
highly expressed in AML subtypes carrying t 
(11q23)/MLL rearrangements, t(15;17)/PML-
RARA, FLT3-ITD, and/or NPM1 mutations 
(Li et al. 2017b). Functioning as an m6 A eraser, 
FTO removes m6 A marks from the transcripts of 
ASB2 and RARA, two genes with reported roles in 
myeloid cell differentiation and drug response of 
leukemia cells. This results in decreased mRNA 
stability of ASB2 and RARA, therefore promoting 
AML cell survival and leukemogenesis (Li et al.



2017b). Interestingly, it was later discovered that 
FTO mediates the anti-leukemia activity of R-2-
hydroxyglutarate (R-2HG), a metabolite pro-
duced in high levels by mutant isocitrate dehy-
drogenase 1/2 (IDH1/2) enzymes and that was 
previously reported to cause leukemia (Losman 
et al. 2013; Sasaki et al. 2012; Wang et al. 2013). 
R-2HG binds directly to FTO to inhibit its 
demethylase activity, leading to the 
hypomethylation and accelerated decay of MYC 
and CEBPA mRNAs (Su et al. 2018). Moreover, 
treatment with R-2HG or inhibition of FTO could 
sensitize AML cells to first-line chemotherapy 
drugs (Su et al. 2018). These studies collectively 
suggest that targeting FTO signaling could be a 
promising therapeutic approach for AML. 
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Fig. 7.2 Roles and mechanisms of m6 A regulators in 
malignant hematopoiesis. Deregulation of m6 A regulators 
has been identified in various hematopoietic disorders, 
including leukemia (acute myeloid leukemia, acute lym-
phoblastic leukemia, and chronic myeloid leukemia), lym-
phoma (diffuse large B-cell lymphoma, nasal-type natural 
killer/T-cell lymphoma, and cutaneous T-cell lymphoma), 

and multiple myeloma. Although some studies have yet to 
characterize the m6 A-modified target transcripts responsi-
ble for the function of m6 A regulators, critical target 
transcripts regulated by m6 A modification have been 
identified and illustrated in such hematopoietic 
malignancies 

As another known m6 A eraser, ALKBH5 has 
been found to be aberrantly overexpressed in 
AML, and its increased expression is associated 
with poor prognosis in AML patients (Shen et al. 
2020; Wang et al. 2020). In line with this, 
ALKBH5 was preferentially overexpressed in 
LSCs, and its m6 A demethylation activity was 
necessary for the survival of AML cells both 
in vitro and in vivo. Mechanistic study revealed 
that KDM4C depletion of the repressive histone 
mark H3K9me3 around the ALKBH5 locus 

increases chromatin accessibility, resulting in the 
overexpression of ALKBH5 in leukemia cells 
(Wang et al. 2020). TACC3 and AXL have been 
identified as functional targets of ALKBH5. The 
stability of mRNA for both targets decreased 
when ALKBH5 was deleted. Importantly, loss 
of function of either TACC3 or AXL could 
mimic the effects of ALKBH5 depletion, while 
the forced expression of TACC3 or AXL could at 
least partially rescue the growth inhibition or 
clonogenic defect caused by ALKBH5 deficiency 
(Shen et al. 2020; Wang et al. 2020). Considering 
that ALKBH5 is dispensable for normal hemato-
poiesis, the essential role of ALKBH5 in AML 
cells and LSCs may represent a therapeutic 
vulnerability. 
In AML, the oncogenic roles of METTL3 and 

METTL14 as m6 A writers have been reported by 
us and other groups. Both METTL3 and 
METTL14 were highly expressed in AML com-
pared to the vast majority of other cancer types 
(Barbieri et al. 2017; Vu et al. 2017; Weng et al. 
2018). METTL3 promoted AML cell prolifera-
tion and AML development in an m6 A-dependent 
manner by methylating its target transcripts, 
including MYC, BCL2, and PTEN (Vu et al. 
2017). In addition, it has been reported that



METTL3 can be recruited to chromatin by 
CEBPZ, a transcription factor critical for 
hematopoietic differentiation (Barbieri et al. 
2017). Promoter-bound METTL3 introduces 
m6 A modifications within the coding region of 
associated mRNA transcripts, such as SP1 and 
SP2, and enhances their translation by relieving 
ribosome stalling (Barbieri et al. 2017). We found 
that METTL14 is aberrantly overexpressed in 
certain AML subtypes, including those carrying 
t(11q23)/MLL rearrangements, t(15;17)/PML-
RARA, and t(8;21)/AML1-ETO, and that similar 
to METTL3, METTL14 could be upregulated by 
corresponding oncofusion genes (Weng et al. 
2018). In vitro and in vivo gain- and loss-of-
function studies have demonstrated that 
METTL14 plays a critical oncogenic role in the 
initiation and development of AML (Weng et al. 
2018). Importantly, MYB and MYC, two well-
known TFs involved in leukemogenesis, were 
found to be direct targets of METTL14 and medi-
ate the effect of METTL14 knockdown/knockout 
in AML (Weng et al. 2018). Furthermore, we 
have identified SPI1 as a negative regulator of 
METTL14 expression in both HSCs and AML 
cells (Weng et al. 2018). Taken together, these 
findings highlight the critical roles of the m6 A 
MTC core and m6 A modification in malignant 
hematopoiesis. 
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In addition to erasers and writers, the roles of 
m6 A readers have also been investigated in AML. 
YTHDF2 has recently been proposed as another 
potential therapeutic target for AML. YTHDF2 
was found to be overexpressed in a wide range 
of human AML cases, and its expression was 
found to be correlated with LSC activity (Paris 
et al. 2019). Depletion of Ythdf2 selectively 
compromises AML initiation and propagation 
by extending the half-life of diverse 
m6 A-containing transcripts that contribute to the 
overall integrity of LSC function, including the 
tumor necrosis factor receptor Tnfrsf2 (Paris et al. 
2019). In AML with t(8;21), expression of 
YTHDF2 was upregulated by the AML1/ETO-
HIF1 alpha loop, and high expression of 
YTHDF2 was associated with a higher risk of 
relapse and inferior relapse-free survival (Chen 
et al. 2021b). YTHDC1 was found to be 

significantly upregulated in AML samples com-
pared to healthy controls and is required for the 
growth of AML cells in vitro and AML develop-
ment in vivo (Sheng et al. 2021). Mechanistic 
studies have revealed that YTHDC1 can stabilize 
mRNAs (e.g., MCM4) of cell cycle-associated 
genes to support the proliferation of malignant 
cells (Sheng et al. 2021). IGF2BP2 has recently 
been shown to be aberrantly overexpressed in 
AML cells, especially in LSCs, likely due to 
transcriptional activation by the AML-associated 
oncoproteins, especially MLL fusions. By 
recognizing m6 A modifications on key transcripts 
in the glutamate metabolism pathway, such as 
MYC, SLC1A5, and GPT2, IGF2BP2 stabilizes 
these mRNAs and enhances their translation. As 
a result, IGF2BP2 supports the high demand for 
glutamate in AML cells, thereby promoting the 
initiation and development of AML (Weng et al. 
2022). 

7.4.2 Acute Lymphoblastic 
(or Lymphocytic) Leukemia 
(ALL) 

ALL is a type of cancer that originates in the bone 
marrow. It is characterized by the abnormal pro-
liferation of early lymphoid precursors, which 
replace the normal hematopoietic cells in the 
marrow. ALL accounts for approximately 80% 
of childhood leukemia. Although the 5-year sur-
vival rate has increased to over 70% due to sig-
nificant advances in treatment protocols in recent 
years, recurrence still occurs in 15–20% of cases. 
High expression of USP1 is correlated with 

poor prognosis in T-ALL patients. It mediates 
T-ALL chemoresistance by interacting with and 
deubiquitinating Aurora B. It has recently been 
discovered that ALKBH5 can enhance the 
expression of USP1 by decreasing the m6 A level 
and mRNA stability of USP1 mRNA. Therefore, 
inhibiting ALKBH5 reduced USP1 levels and 
improved glucocorticoid resistance in T-ALL 
cells by suppressing Aurora B expression (Gong 
et al. 2021). This suggests a new therapeutic 
approach for ALL.
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Other regulators of m6 A modification have 
been shown to be dysregulated in ALL. For 
example, a study by Sun et al. found that ETV6/ 
RUNX1-positive B-ALL had low expression of 
METTL3, which was associated with a high 
recurrence rate (Sun et al. 2019). However, it 
has yet to be investigated whether these regulators 
play a role in ALL. 

7.4.3 Chronic Myeloid Leukemia 
(CML) 

CML is a type of myeloproliferative neoplasm 
that is characterized by the presence of the 
Philadelphia chromosome and the resulting 
BCR-ABL1 oncofusion protein. Although tyro-
sine kinase inhibitors (TKIs) have been devel-
oped to successfully block the enzymatic 
activity of BCR-ABL1, these medications must 
be taken for life to keep the disease under control 
(Ben-Neriah et al. 1986; Druker et al. 2006, 1996; 
Goldman and Melo 2001; Rowley 1973). In addi-
tion, resistance to TKIs remains a challenge in 
curing CML patients. Therefore, further mecha-
nistic studies are necessary to develop improved 
therapeutic options for CML. 
Recently, Ianniello and colleagues found that 

the expression of METTL3/METTL14 was 
upregulated in CML patients. This upregulation 
was required for the proliferation of primary 
CML cells or CML cell lines, regardless of their 
sensitivity to the first-generation TKI imatinib 
(Ianniello et al. 2021). They further proposed a 
model in which METTL3/METTL14 modifies 
nascent transcripts in the nucleus, while 
METTL3 promotes translation of certain 
transcripts in the cytoplasm independent of its 
catalytic activity, highlighting a role of 
METTL3/METTL14 in CML and suggesting 
that inhibiting the METTL3/METTL14 complex 
could hold therapeutic potential for CML cells 
that have escaped from TKI treatment. Another 
group has reported that the downregulation of the 
lncRNA nuclear-enriched abundant transcript 
1 (NEAT1) in CML is partly attributed to the 
METTL3-mediated m6 A modification, which in 

turn promotes the progression of CML (Yao et al. 
2021). 

7.4.4 Lymphoma 

Expression of METTL3, as well as m6 A level, 
was found to be upregulated in diffuse large 
B-cell lymphoma (DLBCL), the most common 
subtype of lymphoma (Cheng et al. 2020). By 
regulating the m6 A level of pigment epithelium-
derived factor (PEGF), METTL3 promotes the 
proliferation of DLBCL cells in vitro and the 
progression of DLBCL cells in nude mice 
(Cheng et al. 2020). ALKBH5 mediates the 
demethylation of lncRNA TRERNA1, promoting 
its expression in DLBCL. TRERNA1 acts as a 
scaffold, recruiting EZH2 to epigenetically 
silence p21, thereby contributing to DLBCL cell 
proliferation both in vitro and in vivo (Song et al. 
2022). In contrast to that in DLBCL, the expres-
sion of METTL3 was significantly 
downregulated in cutaneous T-cell lymphoma 
(CTCL) cells. The decline of METTL3 resulted 
in reduced methylation on CDKN2A mRNA, 
which in turn blocked the interaction between 
IGF2BP2 and CDKN2A, leading to the degrada-
tion of CDKN2A mRNA transcripts and the pro-
liferation and migration of CTCL cells (Wang 
et al. 2022a). In nasal-type natural killer/T-cell 
lymphoma (NKTCL), WTAP increases the m6 A 
level of the dual-specificity phosphatase 
6 (DUSP6) mRNA transcript, leading to 
enhanced mRNA stability of DUSP6. This 
contributes to the progression of NKTCL and 
chemotherapy resistance to cisplatin (Ma et al. 
2021). 

7.4.5 Multiple Myeloma (MM) 

Studies on RNA m6 A modification in MM have 
emerged in the past 2 years. METTL3 has been 
reported to be upregulated in MM and to promote 
tumorigenesis by enhancing the stability of Yin 
Yang 1 (YY1) mRNA and facilitating the matura-
tion of primary miR-27a-3p in an m6 A-dependent 
manner (Che et al. 2022). METTL7A was



identified as an RNA methyltransferase in MM 
cells. It mediates m6 A methylation of lncRNAs 
LOC606724 and SNHG1, promoting their pack-
aging into adipocyte exosomes (Wang et al. 
2022b). The increased levels of lncRNA in MM 
cells have been found to be positively correlated 
with poor prognosis in MM patients (Wang et al. 
2022b). Isocitrate dehydrogenase 2 (IDH2) 
activates FTO in MM, which leads to a decrease 
in m6 A levels on WNT7B mRNA transcripts, 
resulting in the increase in WNT7B expression 
and the activation of the Wnt signaling pathway 
to promote tumorigenesis and progression of MM 
(Song et al. 2021). Upregulation of FTO has been 
reported by another group to be responsible for 
the decreased m6 A level in plasma cells from MM 
patients (Xu et al. 2022). FTO promotes MM cell 
proliferation, migration, and invasion by targeting 
HSF1/HSPs in a YTHDF2-dependent manner. 
Additionally, inhibiting FTO showed a synergis-
tic effect with bortezomib treatment in inhibiting 
extramedullary myeloma formation. These 
findings highlight the FTO-HSF1/HSP axis as a 
potential therapeutic target in MM (Xu et al. 
2022). The other m6 A eraser, ALKBH5, was 
also found to play a role in MM. Yu and 
colleagues found that ALKBH5 was highly 
expressed in CD138+ plasma cells from MM 
patients. They also found that reducing 
ALKBH5 expression impeded MM cell survival 
and invasion, most likely through restoring the 
m6 A level of the SAV1 transcript (Yu et al. 2022). 
HNRNPA2B1 has been found to be elevated in 
MM patients and is associated with poor progno-
sis. By recognizing m6 A modifications on ILF3 
mRNA, HNRNPA2B1 stabilizes ILF3 mRNA 
and promotes AKT3 expression in an ILF3-
dependent manner (Jiang et al. 2021). The same 
group also reported an oncogenic role of 
YTHDF2 in MM, in which YTHDF2 destabilizes 
its target transcript STAT5A in an m6 A-dependent 
manner to activate the ERK signaling pathway 
(Hua et al. 2022). 
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7.5 Targeting of m6 A Modification 
in Malignant Hematopoiesis 

Given the significant roles of m6 A regulators in 
hematopoietic malignancies, there has been a 
recent development of inhibitors that target these 
m6 A regulators. As the first m6 A regulator linked 
to malignant hematopoiesis, FTO has become the 
most attractive target for developing inhibitors to 
treat hematopoietic malignancies (Deng et al. 
2018b). R-2HG, a major metabolic product of 
mutant IDH1/2, has been found to inhibit the 
m6 A demethylase activity of FTO and thereby 
exhibit anti-leukemia efficacy both in vitro and 
in vivo (Su et al. 2018). In addition, R-2HG could 
sensitize AML cells to a range of first-line thera-
peutic agents, including all-trans retinoic acid 
(ATRA), 5-azacytidine (5-Aza), decitabine 
(DAC), daunorubicin (DNR), and cytosine 
arabinoside (Ara-C) (Su et al. 2018). More potent 
FTO inhibitors, such as FB23-2, CS1 (also 
known as bisantrene), and CS2 (also known as 
brequinar), have been developed later. These 
inhibitors have shown remarkable suppression 
of AML progression in xeno-transplanted mice, 
including PDX AML models (Huang et al. 
2019b; Su et al. 2020). Recently, inhibitors of 
METTL3 have also been reported. Among them, 
STM2457 has been shown to be a highly potent 
and selective first-in-class catalytic inhibitor of 
METTL3 and could specifically target stem cell 
subpopulations of AML (Yankova et al. 2021). In 
addition to targeting m6 A erasers and writers, 
inhibitors for m6 A readers have recently been 
developed. An inhibitor named CWI1-2, which 
targets IGF2BP2, has been developed and shown 
to suppress glutamate metabolism and inhibit the 
growth of AML cells both in vitro and in vivo 
(Weng et al. 2022). Such findings demonstrate 
that m6 A regulators hold promise as therapeutic 
targets for the treatment of hematopoietic 
malignancies.
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7.6 Conclusions and Perspectives 

In the past few years, it has been shown that RNA 
m6 A modification plays critical roles in almost 
every type of cancers, particularly in 
hematopoietic malignancies. However, whether 
the level of total cellular m6 A correlates with 
cancer states remains controversial in the field of 
RNA cancer epigenetics. In leukemia studies, 
evidence is accumulating that the abundance of 
m6 A on specific target transcripts, as well as on 
special target sites of certain target transcripts 
with important functions, is important for AML 
pathogenesis, rather than the total level of cellular 
m6 A (Deng et al. 2018c). This could explain the 
oncogenic roles of METTL3/METTL14 and 
FTO/ALKBH5, which represent m6 A writers 
and erasers, respectively, in AML. It suggests 
that tipping the balance of methylation and 
demethylation toward either direction could lead 
to deleterious effects for cancers. This informa-
tion could be utilized for the development of 
novel targeted therapies for hematopoietic 
malignancies and other cancer types. Future 
investigations should focus on identifying critical 
m6 A sites on specific target transcripts. This will 
enable the manipulation of a single m6 A site for 
cancer therapy, rather than influencing the total 
cellular m6 A level. In addition, it is still unclear 
how various m6 A reader proteins recognize m6 A 
sites within the same cellular context and how this 
impacts the development of cancer. 
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