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Crosstalk between histone/DNA modifications and RNA 
N6-methyladenosine modification
Yushuai Wang1,*, Huilin Huang2,*, Jianjun Chen3,4 and  
Hengyou Weng1,5,6

N6-methyladenosine (m6A) is the most prevalent internal RNA 
modification in eukaryotic messenger RNAs (mRNAs), 
regulating gene expression at the transcription and post- 
transcription levels. Complex interplay between m6A and other 
well-studied epigenetic modifications, including histone 
modifications and DNA modification, has been extensively 
reported in recent years. The crosstalk between RNA m6A 
modification and histone/DNA modifications plays a critical role 
in establishing the chromatin state for the precise and specific 
fine-tuning of gene expression and undoubtedly has profound 
impacts on both physiological and pathological processes. In 
this review, we discuss the crosstalk between RNA m6A 
modification and histone/DNA modifications, emphasizing their 
sophisticated communications and the mechanisms underlying 
to gain a comprehensive view of the biological relevance of 
m6A-based epigenetic network.
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Introduction
After the central dogma of molecular biology was first 
proposed by Francis Crick in 1956 [1], modifications on 
DNA and proteins have been discovered to regulate this 
process [2,3]. During the last decade, RNA modifica-
tions, especially N6-methyladenosine (m6A), were found 
to also contribute to gene expression control [4–9]. 
Therefore, the regulation of genetic information be-
comes more stereoscopic and complicated instead of 
simply flowing from DNA to mRNA and then to protein. 
Uncovering the crosstalk between chromatin (include 
DNA and histones) and RNA would help to understand 
the regulatory network controlling gene expression more 
comprehensively.

RNA m6A modification, similar to most of the mod-
ifications on DNA and protein, is reversible and dy-
namic, with ‘writer’ and ‘eraser’ proteins being 
identified for catalyzing and removing the methylation 
marks, respectively. The m6A modification in RNA is 
deposited into a conserve DRACH (D = G/A/U; R = G/ 
A; H = A/C/U) motif by the methyltransferase complex 
(MTC) consisting of METTL3 (methyltransferase like 
3)-METTL14 (methyltransferase like 14)-WTAP 
(Wilms’ tumor 1-associating protein) and other cofac-
tors and has a distinctive feature of being enriched near 
the stop codon [10–12]. FTO (fat mass and obesity- 
associated protein) and ALKBH5 (AlkB homolog 5) are 
two demethylases that could remove m6A modifica-
tions [13–15]. These m6A modifications couples with 
different layers of gene regulation through being re-
cognized by ‘reader’ proteins including members of the 
YT521-B homology (YTH) family (YTHDF1/2/3) 
[16–18], YTH domain–containing proteins (YTHDC1/ 
2) [19,20], and insulin-like growth factor 2 mRNA- 
binding proteins (IGF2BP1/2/3) [21], which exert a 
great influence on the metabolism and function of 
target RNAs.

Accumulating evidence suggests that the deposition of 
m6A marks along RNAs is determined by histone mod-
ifications cotranscriptionally and in turn RNA m6A gov-
erns the deposition of local DNA methylation or histone 
marks (Figure 1). The crosstalk among these epigenetic 
events represents a new layer of gene expression reg-
ulation.
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Histone modification guides RNA  
N6-methyladenosine modification
Histones are basic proteins that condense DNA into 
chromatin. Numerous post-translational modifications 
have been identified in histones and found to influence 
the structure of chromatin, resulting in transcriptional 
activation or repression [22,23]. In a previous study, we 
found the distribution pattern of mRNA m6A is not 
random but determined cotranscriptionally by the active 
histone mark, H3K36me3 [24]. We showed that 69.2% of 
m6A peaks overlapped with the H3K36me3 modification 
and that reducing cellular H3K36me3 by knocking down 
its methyltransferase SETD2 or overexpression of its 
demethylase KDM4A resulted in a significant decrease 
of RNA m6A levels without affecting expression or in-
teraction of the critical MTC components, suggesting 
that H3K36me3 can guide m6A deposition. Mechanistic 
studies revealed that H3K36me3 could be recognized by 
the m6A ‘writer’ METTL14, which recruits the MTC to 
deposit m6A marks on newly transcribed mRNAs co-
transcriptionally (Figure 2a). The H3K36me3-Mettl14- 
m6A axis is crucial for the in vitro differentiation of 
mouse embryonic stem cells (mESCs) and provides the 
first evidence for the crosstalk between histone and 
RNA modifications [24].

Impact of RNA N6-methyladenosine on 
histone modifications/chromatin state
On the other hand, RNA m6A also regulates the mod-
ification of histones and chromatin state (Figure 2b). Li 

et al. reported that transcripts produced from chromatin 
without the repressive histone mark H3K9me2 were 
more enriched for m6A compared with those with 
H3K9me2, and deletion of METTL3/METTL14 re-
sulted in an increased H3K9me2 level without altering 
the expression of its methyltransferases or demethylases 
[25]. They further found that the m6A reader YTHDC1 
recruits the H3K9me2 demethylase KDM3B to chro-
matin, especially where m6A was deposited, leading to 
H3K9me2 demethylation and gene expression [25].

Chromatin-associated RNAs (caRNAs) interact with 
chromatin through cis, trans, or cis-trans manners and 
have been identified as key players in transcriptional 
regulation [26,27]. Liu et al. showed that m6A could be 
deposited by METTL3 cotranscriptionally onto 
caRNAs, including enhancer RNAs (eRNAs), promoter- 
associated RNAs (paRNAs), and repeat RNAs, which 
were recognized by YTHDC1 to facilitate their de-
gradation [28]. Depletion of Mettl3 or Ythdc1 in mESCs 
reduces m6A abundance and increases the expression 
level of caRNAs, through recruiting active transcription 
factors (e.g. CBP/EP300 and YY1) and repelling re-
pressive factors, such as PRC2 (polycomb repressive 
complex 2), leads to open chromatin state at caRNA loci 
and elevated transcription rates of the downstream genes 
[28] (Figure 2c). Another study reported that YTHDC1 
is recruited to chromatin by m6A-marked repeat RNAs, 
such as IAP (intracisternal A particle) and LINE1 (long- 
interspersed element-1) retrotransposons, and physically 

Figure 1  
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Epigenetic and epitranscriptomic modifications add additional complexity to the gene expression control of the Central Dogma. Orange lines show the 
effect of epigenetic and epitranscriptomic modifications on the Central Dogma, in which transcription, RNA processing, RNA export, RNA stability, or 
translation are regulated by such modifications. Green lines denote crosstalk among epigenetic and epitranscriptomic modifications. 5hmC, 5- 
hydroxymethylcytosine; Me, methylation; Ac, acetylation.  
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interacts with the H3K9me3 methyltransferase 
SETDB1 (SET domain bifurcated histone lysine me-
thyltransferase 1) to mediate H3K9me3 deposition and 
repress 2C-like transition [29]. Therefore, Ythdc1 KO 
dampened SETDB1-dependent H3K9me3 deposition 
and resulted in the subsequent reactivation of transpo-
sable element (TEs) and programmed cells into a 2C- 
like totipotency state, which could be recapitulated by 
Mettl3 KO [29] (Figure 2d). Similar findings were also 
reported by other groups [30,31] (Figure 2d). Chen et al. 
reported that YTHDC1, through binding the m6A- 
marked LINE1 RNAs on chromatin, promotes the for-
mation of the LINE1-NCL partnership and the chro-
matin recruitment of KAP1 (also known as Tripartite 
motif-containing 28 [TRIM28]) to establish H3K9me3 
marks on 2C-related retrotransposons and repress the 2C 
program [30]. Xu et al. showed that METTL3-mediated 
m6A modification on IAP RNAs could be recognized by 
YTHDC1, which recruits METTL3 to facilitate the 
recruitment of SETDB1 and the associated factor 
TRIM28 to IAP elements for the deposition of the 
H3K9me3 repressive mark on chromatin [31]. It should 

be noted that in these studies, shRNA-mediated 
knockdown or CRISPR-based knockout were used to 
induce stable gene silencing. Chelmicki et al. instead 
used degron-mediated system to induce acute depletion 
of METTL3 and METTL14 and also observed an in-
crease of IAP mRNA [32]. However, no obvious change 
in H3K9me3 was observed, suggesting distinct effects of 
early or stable m6A perturbation on histone modification, 
which should be carefully taken into account in future 
study. Another study reported that m6A-modified 
eRNAs recruit YTHDC1 to partition into liquid-like 
condensates, which in turn facilitate the assembly of 
Bromodomain containing 4 (BRD4) coactivator con-
densates and their recruitment to enhances, leading to 
gene activation [33].

In addition to METTL3 and YTHDC1, other m6A 
regulators also participate in the regulation of chromatin 
state. In mESCs, Fto KO increases m6A on LINE1 
RNAs and results in the close of local chromatin, char-
acterized by decreased H3K4me3 and H3K27ac as well 
as increased H3K9me3 levels at these loci [34]. The 

Figure 2  
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Crosstalk between m6A RNA modification and chromatin state. (a) Histone H3K36me3 modification guides RNA m6A modification through recruiting 
METTL14 and the MTC complex cotranscriptionally; (b) YTHDC1 recruits the H3K9me2 demethylase KDM3B to chromatin to demethylate H3K9me2; 
(c) Reducing m6A on caRNAs increases caRNAs abundance and leads to open chromatin state and active transcription; (d) m6A-marked TE RNAs are 
recognized by YTHDC1, which recruits SETDB1 and/or TRIM28 to establish H3K9me3 marks on 2C-related retrotransposons; (e) RBFOX2 facilitates 
methylation of paRNAs by recruiting RBM15, the latter can interact with YTHDC1 and therefore promoting chromatin silencing through recruiting 
PRC2 complex at genomic sites occupied by RBFOX2; (f) FXR1 recognizes m6A and recruits TET1 to demethylate adjacent DNA, leading to increased 
chromatin accessibility; (g) YTHDC2 binds m6A-modified HERV-H RNAs and recruits TET1 to remove 5mC and prevent epigenetic silencing from 
LTR7/HERV-H genomic loci. Pol II, RNA polymerase II; TF, transcription factor.  
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FTO-LINE1 RNA axis also contributes to mouse oocyte 
and embryonic development [34]. Recently, RBFOX2 
(RNA binding fox-1 homolog 2) was identified as an 
m6A-binding protein that plays a role in regulating m6A- 
modified caRNAs [35]. RBFOX2 facilitates methylation 
of paRNAs by recruiting the MTC component RBM15, 
the latter can interact with YTHDC1 and therefore 
promoting chromatin silencing and transcription sup-
pression through recruiting PRC2 complex at genomic 
sites occupied by RBFOX2 [35] (Figure 2e).

Influence of RNA N6-methyladenosine on DNA 
methylation
DNA 5-methylcytosine (5mC) of CpG dinucleotides is 
the most common DNA methylation event in mammals, 
which is commonly associated with gene silencing [36,37]. 
Very recently, the formation of m6A has been suggested 
to couple with DNA demethylation (Figure 2f, g), high-
lighting the potential crosstalk between them in physio-
logic and pathologic processes. Deng et al. found that 
METTL3-mediated m6A can be recognized by FXR1 
(FMR1 autosomal homolog 1), which recruits the 5mC 
demethylase TET1 cotranscriptionally and directs it to 
demethylate adjacent DNA cytosines, leading to altered 
chromatin accessibility and gene transcription in esopha-
geal squamous cell carcinoma cells [38]. Sun et al. de-
velop CARGO-BioID to capture TE-associated proteins 
and found that YTHDC2 occupies genomic loci of the 
retrotransposon LTR7/HERV-H in hESCs through in-
teraction with m6A-modified HERV-H RNAs [39]. Fur-
thermore, they found that YTHDC2 interacts with TET1 
to remove 5mC and prevent epigenetic silencing from 
LTR7/HERV-H genomic loci, which leads to the in-
hibition of neural differentiation of hESCs [39].

Inter-regulation of N6-methyladenosine and 
other modifications
In addition to the above-mentioned direct crosstalk, 
extensive studies indicate that m6A and histone mod-
ifications regulate each other indirectly by affecting ex-
pression of writers or erasers of the other modification. 
For example, deficiency of Mettl14 stabilizes transcripts 
of CBP/p300, leading to a significant increase in 
H3K27ac and the loss of embryonic neural stem cell self- 
renewal [40]. m6A was also found on transcripts of Ezh2 
and its reduction upon Mettl3 knockdown decreased 
both Ezh2 protein expression and H3K27me3 levels, 
resulting in defects in neurogenesis and neuronal de-
velopment [41]. Translation of histone H3K4 methyl-
transferases, such as SETD1A, SETD1B, and KMT2D, 
could be enhanced by m6A modifications. This facil-
itates the transcriptional activation of genes associated 
with stage-specific erythroid progenitor transcription 
programs [42]. In addition, YTHDF2 deficiency 

stabilizes mRNA of the histone methyltransferase 
KDM6B, promoting H3K27me3 demethylation and 
subsequent activation of transcription of multiple 
proinflammatory cytokines [43]. IGF2BP2 stabilizes 
mRNA of PRMT6, resulting in the increase of 
H3R2me2a modification and the subsequent suppres-
sion of MFSD2A expression, which restricts doc-
osahexaenoic acid levels and maintains leukemia stem 
cells [44]. On the other hand, KDM5C mediates the 
demethylation of H3K4me3 in the promoter region of 
METTL14, thereby repressing the transcription of 
METTL14 in colorectal cancer [45]. Promoter of 
IGF2BP2 is occupied by active transcription marks, in-
cluding H3K27ac, H3K4me3, and H3K79me2, resulting 
in the elevation of IGF2BP2 expression and the sub-
sequent stabilization of its m6A target transcripts in 
acute myeloid leukemia (AML) [46].

Conclusion and perspectives
The aforementioned studies, including direct or indirect 
regulation between RNA m6A and DNA/histone mod-
ifications, have demonstrated extensive interplay between 
these epigenetic regulation events. The impact of histone 
modification on m6A deposition may provide a mechanism 
for the faithful transmission of epigenetic information 
across generations and, together with the influence of m6A 
on histone modifications or DNA methylation, enable the 
coordination of various levels of gene regulation. Due to 
the spatial proximity between newly transcribed RNAs 
and chromatin, one would expect more crosstalk between 
RNA m6A modification and other cotranscriptional pro-
cesses to be found that fine-tune chromatin state and gene 
expression globally and control cell fate decision. It is 
possible that other histone methylations, acetylations, or 
DNA methylations also have crosstalk with m6A or other 
types of RNA modifications to eventually shape the tran-
scriptome. Looking forward, there are still many inter-
esting questions needed to be explored.

First, how m6A modification in long noncoding RNA 
(lncRNA) and caRNAs participates in the crosstalk with 
chromatin and the corresponding biological processes 
warrants further study. It was reported that YTHDC1 
recognizes m6A marks on the XIST lncRNA [47]; how-
ever, how the binding of YTHDC1 to XIST leads to 
gene silencing remains unclear. Liu et al. showed that 
TE-derived RNAs predominantly target the chromatin 
regions of their respective subfamilies [28]. Intriguingly, 
TEs contribute significantly to the generation of reg-
ulatory noncoding RNAs (ncRNAs), including micro-
RNAs and lncRNAs, in which m6A methylation has 
been found to regulate their maturation and function. It 
is likely that TE-derived ncRNAs could affect TE or 
non-TE transcripts by sequence complementarity. In 
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addition, ncRNAs could also regulate the formation of 
heterochromatin boundaries to maintain stable gene 
expression patterns. Whether and how TE-derived 
ncRNAs contribute to the chromatin state and bound-
aries formation in an m6A-dependent manner are inter-
esting and have yet to be investigated.

Second, are there other RNA modifications functioning 
in stem cell development and diseases via regulating 
chromatin? More than 170 RNA modifications have been 
discovered till now, with increasing number of proteins 
being added to the list of regulatory proteins of such 
modifications [48]. m6A modification has provided a 
great example of studying the function and mechanisms 
of other RNA modifications, including but not limited to 
N1-methyl adenosine (m1A), 5-methylcytosine (m5C), 
and pseudouridine (Ψ) [49,50]. With the identification of 
more nuclear-restricted modifiers of such modifications, 
the mask of these modifications in vital cellular pro-
cesses will be revealed in the near future. More im-
portantly, our understanding of the interplay between 
these modifications and chromatin may have clinical 
significance. For instance, an m5C-mediated mechanism 
was responsible for 5-azacytidine (5-AZA) resistance in 
leukemia cells, in which NSUN1, a writer of m5C RNA 
modification, interacts with the chromatin regulator 
BRD4 and the actively elongating RNA polymerase II to 
create active chromatin region; this association, as well as 
the RNA m5C level, was increased in 5-AZA-resistant 
leukemia cell lines and in myelodysplastic syndromes/ 
AML patient samples [51], shedding light on the role of 
RNA modification and the resulting chromatin state on 
drug response. These crosstalk interactions can not only 
provide biomarkers for cancer therapy but also insightful 
mechanisms for the development of new therapeutic 
strategies. For instance, combining m6A enzyme in-
hibitors with inhibitors of specific histone modifications 
or DNA methylation could be explored. Directly tar-
geting the crosstalk, rather than the modifications 
themselves, may also prove to be effective.

Finally, as the interactions between epitranscriptomics 
and epigenetics are becoming increasingly pervasive, a 
deeper and more precise understanding of the molecular 
basis of m6A turns out to be essential to grasp the bio-
logical significance of its involvement in development 
and various diseases. One of the challenges is the de-
velopment of more advanced m6A sequencing techni-
ques [8]. Antibody-based sequencing methods lack site- 
specific information of m6A, and the absolute abundance 
cannot be precisely determined. In addition, modifica-
tions on ncRNAs, such as rRNA and tRNA, cannot be 
adequately evaluated. Ultraviolet cross-linked im-
munoprecipitation techniques can distinguish m6A at 
single-nucleotide resolution; however, their detection 

rate is comparatively low. The advancement of new 
techniques that require limited amount of RNA material 
while provide base-resolved m6A profiles with improved 
quantitative information would significantly propel re-
search in this field.
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